Standardized in 1997, Wi-Fi has changed the way that we compute. Today, almost every one of us uses a Wi-Fi connection on a daily basis, whether it's for watching a show on a tablet at home, using our laptops at work, or even transferring photos from a camera. Millions of Wi-Fi-enabled products are being shipped each week, and it seems this technology is constantly finding its way into new device categories.
Since its humble beginnings, Wi-Fi has progressed at a rapid pace. While the initial standard allowed for just 2 Mbit/s data rates, today's Wi-Fi implementations allow for speeds in the order of Gigabits to be supported. This last in our three part blog series covering the history of Wi-Fi will look at what is next for the wireless standard.
Gigabit Wireless
The latest 802.11 wireless technology to be adopted at scale is 802.11ac. It extends 802.11n, enabling improvements specifically in the 5.8 GHz band, with 802.11n technology used in the 2.4 GHz band for backwards compatibility.
By sticking to the 5.8 GHz band, 802.11ac is able to benefit from a huge 160 Hz channel bandwidth which would be impossible in the already crowded 2.4 GHz band. In addition, beamforming and support for up to 8 MIMO streams raises the speeds that can be supported. Depending on configuration, data rates can range from a minimum of 433 Mbit/s to multiple Gigabits in cases where both the router and the end-user device have multiple antennas.
If that's not fast enough, the even more cutting edge 802.11ad standard (which is now starting to appear on the market) uses 60 GHz ‘millimeter wave’ frequencies to achieve data rates up to 7 Gbit/s, even without MIMO propagation. The major catch with this is that at 60 GHz frequencies, wireless range and penetration are greatly reduced.
Looking Ahead
Now that we've achieved Gigabit speeds, what's next? Besides high speeds, the IEEE 802.11 working group has recognized that low speed, power efficient communication is in fact also an area with a great deal of potential for growth. While Wi-Fi has traditionally been a relatively power-hungry standard, the upcoming protocols will have attributes that will allow it to target areas like the Internet of Things (IoT) market with much more energy efficient communication.
20 Years and Counting
Although it has been around for two whole decades as a standard, Wi-Fi has managed to constantly evolve and keep up with the times. From the dial-up era to broadband adoption, to smartphones and now as we enter the early stages of IoT, Wi-Fi has kept on developing new technologies to adapt to the needs of the market. If history can be used to give us any indication, then it seems certain that Wi-Fi will remain with us for many years to come.
Copyright © 2024 Marvell, All rights reserved.